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Abstract :  In this paper, we have investigated LRS Bianchi type-𝐼 universe in the presence of pressureless dark matter and bulk 

viscous fluid of dark energy within the framework of general relativity. To find the solution of Einstein’s field equations, we 

assumed that the deceleration parameter as linear function of Hubble parameter. Under this specification, we obtain the non-

singular solution of LRS Bianchi type-𝐼 model depending upon the particular choice of the value of parameters. The cosmological 

implications of the model including the evolution of effective EoS parameter of bulk viscous dark energy, energy densities and 

bulk viscous coefficient 𝜁 are investigated. It is shown that depending on the parameters of bulk viscous coefficient 𝜁, the bulk 

viscous dark energy model can behave as a quintessence or phantom dark energy. We have also studied the statefinder parameter 

of 𝑟 − 𝑠 plane to characterize different phases of the evolution of the universe and our result is completely agree with the Λ𝐶𝐷𝑀 

prediction in late time. The physical and geometric properties of the cosmological model are also well discussed. Therefore, the 

bulk viscosity of dark energy plays very important role in the accelerated expansion history of the universe.  
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I. INTRODUCTION 

The appearance of new cosmological models is connected with the discovery of the accelerated expansion of the universe. 

Cosmic acceleration can be introduced via dark energy or via modification of gravity (Nojiri and Odintsov [1]). A general review of 

dark energy cosmology was given in Bamba et al. [2]. Dark energy (DE) should have strong negative pressure and can be 

characterized by an equation of state parameter (EoS). Cosmological models that treat dark energy and dark matter as imperfect 

fluids with unusual equation of state are considered in Nojiri and Odintsov [3, 4], where viscous fluids are just one particular case. 

Bulk viscous cosmology is also an alternative to gravity modifying theories (Nojiri and Odintsov [1]) in that it alters the right hand 

side of Einstein’s field equations instead of the left hand side. Bulk viscosity characterizes deviations from local equilibrium which 

modifies the energy-momentum tensor. It is necessary to take into account viscosity effects when considering turbulence (Brevik et 

al. [5]) or other realistic situations. 

Dissipative dark energy models in which the negative pressure, which is responsible for the current acceleration, is an 

effective bulk viscous pressure have been proposed in order to avoid the occurrence of the big rip (Barrow [6]; McInnes [7]). 

Influence of bulk viscosity in the cosmic fluid plays an important role in the big rip phenomenon (Brevik et al. [8]). In this 

scenario which is based on the Eckart theorem (Eckart [9]), we consider the DE fluid with viscous. Evolution of the universe 

involves a sequence of dissipative process. In the case of isotropic and homogeneous model, the dissipative process is modeled as 

a bulk viscosity (Ren and Meng [10]; Hu and Meng [11]; Meng and Duo [12]). Brevik et al. [13] discussed the general account 

about viscous cosmology for early and late time universe. Norman and Brevik [14] analyze characteristic properties of two 

different viscous cosmological models for the future universe. Norman and Brevik [15] derived a general formalism for bulk 

viscous and estimated the bulk viscosity in the cosmic fluid. 

Cosmological models where the modification of gravity is described in terms of a viscous fluid are explored in Myrzakul 

et al. [16], Myrzakulov and Sebastiani [17]. The possibility of a viscosity dominated late epoch of the universe with accelerated 

expansion was already mentioned by Padmanabhan and Chitre [18]. Recently, Velten et al.[19] have investigated phantom DE as 

an effect of bulk viscosity. It is worth noting that Brevik and Gorbunova [20] show that fluid which lies in the quintessence region 

can reduce its thermodynamical pressure and cross the barrier 𝜔𝑑𝑒 = −1, and behave like a phantom fluid with the inclusion of a 

sufficiently large bulk viscosity. As the theoretical point of view, the bulk viscosity can originate due to the deviation from local 

thermodynamic equilibrium. It manifests as an effective pressure to bring back the system to its thermal equilibrium, which was 

broken when the cosmological fluid expands (or contracts) too fast. The bulk viscosity pressure thus generated, ceases as soon as 

the fluid reaches the equilibrium condition and it seems to play a more important role in constructions of cosmological model. 

The bulk viscous driven inflation leads to a negative pressure term, which in process results in repulsive gravity and 

ultimately became a cause for the rapid expansion of the universe (Tripathy et al.[21]; Maartens [22]; Lima et al.[23]). The 

contribution of bulk viscosity to the cosmic pressure plays the role of accelerating the universe. In an expanding system, 

relaxation processes associated with bulk viscosity effectively reduce the pressure as compared to the value prescribed by the 

equation of state. For a large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy behavior. 
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Brevik et al.[13] have investigated viscous cosmology in the early universe for both homogeneous and inhomogeneous EoS and 

examined the bulk viscosity effects on the various inflationary observables. Since viscosity appears to be an important dissipative 

phenomena in Friedman-Robertson-Walker cosmology, therefore it is expected that cosmological model with bulk viscosity fluid 

would produce some results in the two fluid situations. Moreover, viscosity cosmological model indicates a substantial 

contribution of bulk viscosity at the inflationary phase (Barrow [24]; Zimdahl [25]; Bafaluy and Pavon [26]). 

Recently Planck collaboration revealed that this property of isotropic and homogeneity of the universe is well defined by 

the ΛCDM model in the FRW geometry. However, at low multipoles the ΛCDM cosmology shows a poor fit to the CMB 

temperature power spectrum (Ade et al. [27, 28]). This indicates that the isotropy and homogeneity were not the essential features 

of the early universe. Moreover, the recent Planck data results motivate us to construct and analyze the cosmological models with 

anisotropic geometry to get a deeper understanding on the evolution of the universe. In this regard, locally rotationally symmetric 

(LRS) Bianchi type-𝐼 space-time is of fundamental importance since it provides the stipulation framework. Several theoretical 

two fluids DE models either interacting or non-interacting have been discussed widely in the literature (Sheykhi and Setare [29]; 

Amirhashchi [30]; Amirhashchi et al. [31]; Tripathy et al. [32]; Kumar[33]). Santhi et al.[34] has studied bulk viscous string 

cosmological models in 𝑓(𝑅) gravity. The isotropic homogeneous spatially flat cosmological model with bulk viscous fluid 

discussed by Murphy [35]. In a similar approach of two fluids, DE cosmological models were constructed in different general 

scale factors (Mishra et al.[36]). So, all above informations give us motivation to investigate LRS Bianchi type-𝐼 space-time of 

bulk viscous fluid dark energy cosmological model in general relativity. In this paper, we study the behavior of an anisotropic 

LRS Bianchi type-𝐼 universe in the case of viscous dark energy and dark matter which are minimally coupled, that is, when there 

is no interaction between these two dark components. Moreover, we consider a bulk viscosity coefficient with a power law 

dependence on the energy density of dark energy 𝜁 = 𝜁0(𝜌𝑑𝑒)𝛾1  where 𝜁0 and 𝛾1 are non negative constants. 

This paper is organized as follows. In section 2, we present the metric and the field equations. In section 3, we describe the 

solutions of the field equations. We discuss some physical and geometrical properties of the model in section 4. Finally, concluding 

remarks are summarized in section 5. 

2 Metric and field equations 

 We consider the spatially homogeneous and anisotropic LRS Bianchi type-𝐼 space-time in the form  

 𝑑𝑠2 = 𝑑𝑡2 − 𝐴2𝑑𝑥2 − 𝐵2(𝑑𝑦2 + 𝑑𝑧2), (1) 

 where 𝐴, 𝐵 and are metric functions of cosmic time 𝑡 alone. We define the following physical and geometric parameters to be 

used in formulating the law and further in solving Einstein’s field equations for the metric (1). The spatial volume 𝑉, Hubble 

parameter 𝐻, expansion scalar 𝜃, average anisotropy parameter 𝐴𝑚, the shear scalar 𝜎2 and deceleration parameter 𝑞 for LRS 

Bianchi type-𝐼 space-time are defined as 

                𝑉 = 𝑎3 = 𝐴𝐵2, (2) 
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where 𝑢𝑖 = (1,0,0,0) is the four velocity vector and assumed to satisfy 𝑢𝑖𝑢𝑖 = 1 and Δ𝐻𝑖 = 𝐻𝑖 − 𝐻 (𝑖 = 𝑥, 𝑦, 𝑧). The directional 

Hubble parameters are defined as 𝐻1 =
�̇�

𝐴
 and 𝐻2 = 𝐻3 =

�̇�

𝐵
 so that the mean Hubble parameter becomes 𝐻 =
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+ 2
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We consider the universe filled with pressureless dark matter and viscous dark energy fluid. In this case the Einstein’s 

field equations in gravitational units (8𝜋𝐺 = 𝑐 = 1) are given by  

 𝑅𝑖
𝑗

−
1

2
𝑅𝛿𝑖

𝑗
= − (𝑇(𝑚)𝑖

𝑗
+ 𝑇(𝑑𝑒)𝑖

𝑗
), (7) 

 where 𝑇(𝑚)𝑖
𝑗

 and 𝑇(𝑑𝑒)𝑖
𝑗

 are the energy momentum tensors of dark matter and viscous DE fluid, respectively. These are given by  

 𝑇(𝑚)𝑖
𝑗

= (𝜌𝑚, 0, 0, 0), (8) 

 and  

 𝑇(𝑑𝑒)𝑖
𝑗

= (𝜌𝑑𝑒 , −𝑝𝑑𝑒 , −𝑝𝑑𝑒 , −𝑝𝑑𝑒), 

 = 𝑑𝑖𝑎𝑔(1, −𝜔𝑑𝑒 , −𝜔𝑑𝑒 , −𝜔𝑑𝑒)𝜌𝑑𝑒 , 
where 𝜌𝑚 is the energy density of dark matter, 𝜌𝑑𝑒  and 𝑝𝑑𝑒 are, respectively, the energy density and pressure of viscous DE 

component while 𝜔𝑑𝑒 =
𝑝𝑑𝑒

𝜌𝑑𝑒
 is the corresponding EoS parameter. The only change in the formalism because of bulk viscosity is 

that the thermodynamical pressure with the effective pressure 𝑝𝑒𝑓𝑓  and effective of EoS parameter 𝜔𝑒𝑓𝑓 , defined as  

 𝑝𝑒𝑓𝑓 = 𝑝𝑑𝑒 + Π;        𝜔𝑒𝑓𝑓 =
𝑝𝑒𝑓𝑓

𝜌𝑑𝑒
, (10) 

 where Π = −3𝜁𝐻 is the bulk viscosity pressure, 𝜁 is the coefficient of bulk viscosity. The form of the above equation 

was originally proposed by Eckart [9] in the context of relativistic dissipative process occurring in thermodynamic systems went 

out of local thermal equilibrium. Hu and Meng [11], Kremer and Devecchi [37], Cataldo and Cruz [38], Fabris et al. [39] have 

used Eckart approach to explain the current acceleration of the universe with bulk viscous fluid. This motivates us to use Eckart 

formalism on viscous term, especially when one tries to look at recent acceleration of the universe. Here 𝜔𝑒𝑓𝑓 is referred to as the 

effective equation of state parameter of viscous dark energy. Based on Landau and Lifshitz [40] in an irreversible process the 

positive sign of the entropy changes, 𝜁 has to be positive. In a co-moving coordinate system (𝑢𝑖 = 𝛿0
𝑖 ), Einstein’s field equations 

(7) with (8) and (9) for locally rotational symmetric Bianchi type-𝐼 metric (1) subsequently lead to the following system of 

differential equations. 

 2
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 where the overhead dot denotes ordinary differentiation with respect to cosmic time 𝑡. From equations (11) and (12), we get  
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 Taking the second integral of equation (14), we obtain the following relation  
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𝑎3], (15) 

 where 𝑏1 and 𝑏2 are constants of integration. From equations (2) and (15), the values of metric potentials are  

 𝐴 = 𝑏3𝑎exp [
2𝑏1

3
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𝑎3], (16) 

 𝐵 = 𝑏4𝑎exp [−
𝑏1

3
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 where 𝑏3 = 𝑏2

2

3 and 𝑏4 = 𝑏2

−
1

3 are constants of integrations such that 𝑏3𝑏4
2 = 1. The law of energy-conservation equation (𝑇;𝑗

𝑖𝑗
=

0) from (7) yields  

 �̇�𝑚 + 3𝜌𝑚𝐻 + �̇�𝑑𝑒 + 3(1 + 𝜔𝑑𝑒)𝜌𝑑𝑒𝐻 = 0. (18) 

3 Solution of the field equations 

 The field equations (11)-(13) have three differential equations with five unknowns namely 𝐴, 𝐵, 𝜔𝑑𝑒 , 𝜌𝑚 and 𝜌𝑑𝑒 . To 

get determine solutions, we need extra conditions. One can classify models of the universe on the basis of the time dependence of 

Hubble parameter and deceleration parameter. When the Hubble parameter is constant, the deceleration term 𝑞 is also constant 

and equal to −1, as in the de Sitter and steady state universes. In many universes, the deceleration term changes with time. 

Following Tiwari et al.[41, 42], we assume that the deceleration parameter 𝑞 is a linear function of the Hubble parameter 𝐻 as  

 𝑞 = 𝑝1 + 𝑝2𝐻, (19) 

 where 𝑝1 and 𝑝2 are constants. If �̈� is positive, and in this case the deceleration parameter 𝑞 will be negative, the universe is 

accelerating. Also recent observations (Tiwari et al. [42]; Perlmutter et al. [43]; Riess et al.[44-46]; Astier et al. [47]; Spergel et al. 

[48]; Eisentein et al.[49]) have suggested that the present universe is accelerating and that the value of the deceleration parameter 

𝑞 lies between 0 to −1. Therefore it is physically viable conditions which have been extensively used in the literature. 

For mathematical simplicity, we take 𝑝1 = −1 and then, from equation (19), we obtain  

 𝑎 = 𝑒
1

𝑝2
√2𝑝2𝑡+𝑘1 , (20) 

 

where 𝑘1 is constant. This shows that at 𝑡 = −
𝑘1

2𝑝2
, the scale factor 𝑎 tends to a constant. 

In terms of redshift 𝑧, the scale factor 𝑎 and cosmic time 𝑡 become  

 𝑧 = −1 +
1
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 Now from equations (16) and (17), we obtain the metric potentials as  

 𝐴 = 𝑏3𝑒
1

𝑝2
√2𝑝2𝑡+𝑘1exp (

−2𝑏1

27
(3√2𝑝2𝑡 + 𝑘1 + 𝑝2)𝑒

−3

𝑝2
√2𝑝2𝑡+𝑘1), (22) 

 𝐵 = 𝑏4𝑒
1

𝑝2
√2𝑝2𝑡+𝑘1exp (

𝑏1

27
(3√2𝑝2𝑡 + 𝑘1 + 𝑝2)𝑒

−3

𝑝2
√2𝑝2𝑡+𝑘1). (23) 

 Therefore, the metric (1) can be written as  

 

𝑑𝑠2 = 𝑑𝑡2 − 𝑏3
2𝑒

2

𝑝2
√2𝑝2𝑡+𝑘1exp (

−4𝑏1

27
(3√2𝑝2𝑡 + 𝑘1 + 𝑝2)𝑒

−3

𝑝2
√2𝑝2𝑡+𝑘1) 𝑑𝑥2

−𝑏4
2𝑒

2

𝑝2
√2𝑝2𝑡+𝑘1exp (

2𝑏1

27
(3√2𝑝2𝑡 + 𝑘1 + 𝑝2)𝑒

−3

𝑝2
√2𝑝2𝑡+𝑘1) (𝑑𝑦2 + 𝑑𝑧2).

 (24) 

 From the metric (24), we obtain the non singular solution of LRS Bianchi type-𝐼 model depending upon the particular 

choice of the value of problem parameters. 

4 Physical and geometrical properties of the model 

 The spatial volume 𝑉, Hubble parameter 𝐻, expansion scalar 𝜃, shear scalar 𝜎2, anisotropy parameter 𝐴𝑚 and 

deceleration parameter 𝑞 are given by  

 𝑉 = 𝑒
3

𝑝2
√2𝑝2𝑡+𝑘1 , (25) 
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, (29) 

 𝑞 = −1 +
𝑝2
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. (30) 

 The directional Hubble parameters are obtained as  

 𝐻1 =
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+

2𝑏1

3𝑒

3
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 Equations (25) and (27) indicate that the spatial volume is constant at point 𝑡 = −
𝑘1

2𝑝2
 and the expansion scalar is infinite at this 

point. But, it becomes decreasing as cosmic time increases. The volume increases with increasing cosmic time and the universe is 

expanding with increasing cosmic time. 

The physical quantities Hubble parameter 𝐻, directional Hubble parameters, expansion scalar 𝜃 and shear scalar 𝜎2 

diverge at 𝑡 = −
𝑘1

2𝑝2
. As 𝑡 → ∞, the parameters 𝐻, 𝜃 and 𝜎2 tend to zero. We find that lim𝑡→∞

𝜎2

𝜃2 converges to 0, which indicates 

that the model eventually approaches isotropy for late cosmic times 𝑡. Since anisotropy parameter is a measure of deviation from 

isotropic expansion, 𝑡 → ∞ gives the isotropic behavior of the model. The variation of deceleration parameter 𝑞 versus redshift 𝑧 

is plotted in figure 1. From the figure it is seen that the deceleration parameter will be stabilised around −1 in the far future of the 

evolution of the universe and this is in confirmation with the previously obtained limit of 𝑞. By using Eckart theory and taking the 

velocity and acceleration dependence for the bulk viscous coefficient, we have 𝑞 ∼ −0.64 (Sasidharan and Mathew [50]). So 

even though the present model is predicting a never-ending accelerating phase, the universe is not reaching the exact de Sitter 

phase and this is in marked deviation from the corresponding models using the Eckart formalism (Sasidharan and Mathew [50]), 

in which the model evolves asymptotically to the de Sitter phase. It can be concluded that 𝑞 is increasing with the increasing of 

redshift 𝑧 and at late time, the value of 𝑞 approaches −1 which shows the fastest rate of expansion of universe at late time. 

Present observational data obtained by Ade et al. [51] indicates that the universe is accelerating and the value of deceleration 

parameter lies somewhere in the range −1 ≤ 𝑞 < 0. So in this case we can construct a present accelerating model of the universe 

which is in agreement with recent observations of cosmological data. 

 
Figure  1: Plot of redshift 𝑧 versus deceleration parameter 𝑞 for 𝑝2 = 0.5 and 𝑘1 = 0.5. 

 
Figure  2: Plot of energy density of dark matter 𝜌𝑚 versus cosmic time 𝑡 for 𝜌𝑚0

= 1, 𝑝2 = 0.5 and 𝑘1 = 0.5. 
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Figure  3: Plot of bulk viscous dark energy energy density 𝜌𝑑𝑒  versus cosmic time 𝑡 for 𝜌𝑚0

= 1, 𝑏1 = 0.5, 𝑝2 = 0.5 and 𝑘1 =

0.5. 

  
Figure  4: Plot of bulk viscous coefficient 𝜁 versus cosmic time 𝑡 for 𝑏1 = 0.5, 𝜁0 = 0.5, 𝜌𝑚0

= 1, 𝑝2 = 0.5 and 𝑘1 = 0.5. 

  
Figure  5: Plot of effective EoS 𝜔𝑒𝑓𝑓  versus cosmic time 𝑡 for 𝑏1 = 0.5, 𝜌𝑚0

= 1, 𝑝2 = 0.5 and 𝑘1 = 0.5. 

We assumed that the components of energy density of dark matter and viscous dark energy are interact minimally. 

Hence, the energy momentum tensors of the two sources may be conserved separately. 

The energy conservation equation 𝑇(𝑚)𝑖;𝑗
𝑗

= 0, of the dark matter fluid from equation (18) leads to  

 �̇�𝑚 + 3𝜌𝑚𝐻 = 0, (33) 

 Integrating of equation (33), using (21) leads to  

 𝜌𝑚 = 𝜌𝑚0
𝑒

−3

𝑝2
√2𝑝2𝑡+𝑘1 , (34) 
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 where 𝜌𝑚0
 is a positive constant of integration. By using equations (31), (32) and (34) in equation (13), we obtain  

 𝜌𝑑𝑒 =
3

2𝑝2𝑡+𝑘1
−

1

3
𝑏1

2𝑒
−6

𝑝2
√2𝑝2𝑡+𝑘1 − 𝜌𝑚0

𝑒
−3

𝑝2
√2𝑝2𝑡+𝑘1 . (35) 

 The behavior of energy density of matter, 𝜌𝑚, and energy density of bulk viscous of dark energy, 𝜌𝑑𝑒 , have been graphed in 

figure 2 and 3. It is evident that both physical parameters decrease with cosmic time and finally 𝜌𝑚 drops to zero for late time and 

𝜌𝑑𝑒  is positive decreasing values with the passage of cosmic time 𝑡. These behavior of 𝜌𝑚 and 𝜌𝑑𝑒  match with observed universe. 

As a specific case, we consider the bulk viscous coefficient 𝜁 as function of 𝜌𝑑𝑒  (Amirhashchi [52]) has the following form  

 𝜁 = 𝜁0(𝜌𝑑𝑒)𝛾1 = 𝜁0 (
3

2𝑝2𝑡+𝑘1
−

1

3
𝑏1

2𝑒
−6

𝑝2
√2𝑝2𝑡+𝑘1 − 𝜌𝑚0

𝑒
−3

𝑝2
√2𝑝2𝑡+𝑘1)

𝛾1

, (36) 

 where 𝜁0 and 𝛾1 are non-negative constant parameters. From equation (36), we observe that the coefficient of bulk viscosity 𝜁 →

∞ as 𝑡 → −
𝑘1

2𝑝2
, and as cosmic time 𝑡 increases, 𝜁 decreases and tending to a constant. Thus 𝜁 is a decreasing function of cosmic 

time 𝑡. Figure 4 depicts the behavior of bulk viscosity coefficient 𝜁 versus cosmic time for different values of 𝛾1. It is noted that 

as the value of 𝛾1 increases, the bulk viscosity coefficient approaches to zero for late time. Moreover, the influence of bulk 

viscosity more dense in early than late time. 

From equation (11), we get  

 𝑝𝑑𝑒 = − (
2�̈�

𝑎
+

�̇�2

𝑎2 +
𝑏1

2

3𝑎6), 

 = − (
3

2𝑝2𝑡+𝑘1
−

2𝑝2

(2𝑝2𝑡+𝑘1)
3
2

+
𝑏1

2

3
𝑒

−6

𝑝2
√2𝑝2𝑡+𝑘1). (37) 

 From equations (35) and (??), we get the equation of state parameter of non-viscous dark energy, 𝜔𝑑𝑒  as  

 𝜔𝑑𝑒 =
𝑝𝑑𝑒

𝜌𝑑𝑒
= −

(
3

2𝑝2𝑡+𝑘1
−

2𝑝2

(2𝑝2𝑡+𝑘1)
3
2

+
𝑏1

2

3
𝑒

−
6

𝑝2
√2𝑝2𝑡+𝑘1

)

3

2𝑝2𝑡+𝑘1
−

𝑏1
2

3
𝑒

−
6

𝑝2
√2𝑝2𝑡+𝑘1

−𝜌𝑚0𝑒

−3
𝑝2

√2𝑝2𝑡+𝑘1
. (38) 

 

From equation (10), the equation of state parameter of viscous dark energy, 𝜔𝑒𝑓𝑓 , is obtained as  

 𝜔𝑒𝑓𝑓 = 𝜔𝑑𝑒 +
Π

𝜌𝑑𝑒
= 𝜔𝑑𝑒 −

3𝐻𝜁

𝜌𝑑𝑒
. (39) 

 

Using equations (35), (36), (38) in equation (39), the effective EoS parameter of viscous dark energy is obtained as  

 𝜔𝑒𝑓𝑓 = −

(
3

2𝑝2𝑡+𝑘1
−

2𝑝2

(2𝑝2𝑡+𝑘1)
3
2

+
𝑏1

2

3
𝑒

−
6

𝑝2
√2𝑝2𝑡+𝑘1

)

3

2𝑝2𝑡+𝑘1
−

𝑏1
2

3
𝑒

−
6

𝑝2
√2𝑝2𝑡+𝑘1

−𝜌𝑚0𝑒

−3
𝑝2

√2𝑝2𝑡+𝑘1
 

 −
3𝜁0

√2𝑝2𝑡+𝑘1
[

3

2𝑝2𝑡+𝑘1
−

1

3
𝑏1

2𝑒
−6

𝑝2
√2𝑝2𝑡+𝑘1 − 𝜌𝑚0

𝑒
−3

𝑝2
√2𝑝2𝑡+𝑘1]

𝛾1−1

. (40) 

 By using equations (26), (36) and (39), we get effective pressure as 

 

 𝑝𝑒𝑓𝑓 = − (
3

2𝑝2𝑡+𝑘1
−

2𝑝2

(2𝑝2𝑡+𝑘1)
3
2

+
𝑏1

2

3
𝑒

−6

𝑝2
√2𝑝2𝑡+𝑘1) 

 −
3𝜁0

√2𝑝2𝑡+𝑘1
(

3

2𝑝2𝑡+𝑘1
−

1

3
𝑏1

2𝑒
−6

𝑝2
√2𝑝2𝑡+𝑘1 − 𝜌𝑚0

𝑒
−3

𝑝2
√2𝑝2𝑡+𝑘1)

𝛾1

. (41) 

Figure 5 depicts the behavior of effective equation of state parameter 𝜔𝑒𝑓𝑓) of bulk viscous dark energy versus cosmic time 𝑡 for 

values for 𝛾1 = 0, 0.5, 1, 1.5 and 𝜁0 = 0, 0.5. It can be observed from equation (??) that for 𝜁0 = 0, the effective equation of bulk 

viscous dark energy reduced to non-viscous dark energy fluid. Figure 5 shows that 𝜔𝑒𝑓𝑓  of non-viscous DE (𝜁0 = 0) is only 

varying in the quintessence region whereas for (𝜁0 ≠ 0) the variation of bulk viscous DE starts from the relatively high phantom 

region goes to low phantom regions. The EoS parameter of non-viscous dark energy, 𝜔𝑑𝑒 , is decreasing rapidly till present and it 

approaches −1 asymptotically in the future. So, in that case the model represents Λ𝐶𝐷𝑀 model for the future evolution of the 

universe. 

Density parameters 

The viscous dark energy density parameter Ω𝑑𝑒 , dark matter density parameter Ω𝑚, and total density parameter Ω are 

given by  

 Ω𝑚 =
𝜌𝑚

3𝐻2 = (
2𝑝2𝑡+𝑘1

3
) 𝜌𝑚0

𝑒
−3

𝑝2
√2𝑝2𝑡+𝑘1 , (42) 

 Ω𝑑𝑒 =
𝜌𝑑𝑒

3𝐻2 = 1 − (
2𝑝2𝑡+𝑘1

3
) [

𝑏1
2

3
𝑒

−6

𝑝2
√2𝑝2𝑡+𝑘1 + 𝜌𝑚0

𝑒
−3

𝑝2
√2𝑝2𝑡+𝑘1], (43) 

 Ω = Ω𝑚 + Ω𝑑𝑒 =
𝜌𝑚

3𝐻2 +
𝜌𝑑𝑒

3𝐻2 = 1 − (
2𝑝2𝑡+𝑘1

3
)

𝑏1
2

3
𝑒

−6

𝑝2
√2𝑝2𝑡+𝑘1 . (44) 
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Figure  6: Plot of energy density parameters (Ω𝑚, Ω𝑑𝑒 , Ω) versus cosmic time 𝑡 for 𝑏1 = 0.5, 𝑝2 = 0.5 and 𝑘1 = 0.5. 

   From equation (42), the parameter of energy density of dark matter Ω𝑚 is taken to be 0 for late time. However, from 

equation (43) the density parameter of viscous DE ultimately approaches 1. It is evident that for chosen values of free parameters, 

the overall density parameter of derived model is about 1 at late time which matches with observational value of the flatness of 

universe at present epoch. 

State finder parameters 

 Since many number of dark energy models have been proposed to explain the accelerated expansion of the universe, it is very 

important to find a way to discriminate between the various contenders in a model-independent manner. Sahni et al. [53] have 

published a geometric diagnostic technique for contrasting various models of dark energy. For all models predicting the Hubble 

parameter, scale factor, deceleration parameter etc., to distinguish between the models, it is better to use quantities involving higher 

derivatives of 𝐻 or the scale factor. The statefinder parameter pair (𝑟, 𝑠) introduced by them depends on the third order derivative 

of the scale factor. A characteristic property of the statefinder parameter pair is that (𝑟, 𝑠) = (1,0), is a fixed point for the Λ𝐶𝐷𝑀 

model. Evolutionary trajectories of these parameters and their difference from the fixed Λ𝐶𝐷𝑀 point distinguishes the models 

from each other and also from the standard Λ𝐶𝐷𝑀 model. The statefinder parameters are defined and given in our model 

as 

 

   
Figure  7: Plot of 𝑟 versus 𝑠 for 𝑝2 = 0.5 and 𝑘1 = 0.5. 

    

 𝑟 =
𝑎

𝑎𝐻3 = 1 −
3𝑝2

√2𝑝2𝑡+𝑘1
+

2𝑝2
2

2𝑝2𝑡+𝑘1
, (45) 

 𝑠 =
𝑟−1

3(𝑞−
1

2
)

=
−

𝑝2

√2𝑝2𝑡+𝑘1
+

2𝑝2
2

3(2𝑝2𝑡+𝑘1)

−3

2
+

𝑝2

√2𝑝2𝑡+𝑘1

. (46) 

 The evolution of the statefinder parameters in the 𝑟 − 𝑠 plane is shown in figure 7. It is pointed out that the 𝑟– 𝑠 plane for the 

model corresponds to Λ𝐶𝐷𝑀 limit at late times. Its trajectories pointed out that the 𝑟– 𝑠 plane for model possesses the regions of 

the quintessence and phantom model. 
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5 Conclusions 

 In this paper, we have studied locally rotational symmetric Bianchi type-𝐼 universe filled by a pressureless dark matter 

and viscous dark energy in general relativity. To get the exact solutions of the Einstein’s field equations, we assumed that the 

deceleration parameter (𝑞) is the linear function of the Hubble parameter (𝐻) i.e., 𝑞 = 𝑝1 + 𝑝2𝐻, which yields scale factor 𝑎 as 

𝑎 = 𝑒
1

𝑝2
√2𝑝2𝑡+𝑘1

 (Tiwari et al. 2015, 2016). We considered a case when viscous dark energy and pressureless dark matter do not 

interact with each other and the coefficient of bulk viscosity is taken to be proportional to some power function of the energy 

density. We observe that the volume of the model increases with increasing cosmic time. Hubble parameter, expansion scalar, 

shear scalar and directional Hubble parameters become converge to zero at late times showing a uniform spatial expansion of the 

universe. 

Some of the physical behavior of the cosmological parameters is studied through their graphical representation. The 

followings are the interesting observations in the model: It is realistic because of the fact that the energy densities of matter and 

viscous dark energy are always non-negative and decrease with increasing cosmic time (see figures 2, 3). The behavior of 

deceleration parameter with respect to redshift shows that the model exhibits accelerating universe (figure 1). The deceleration 

parameter is found to be negative 𝑞 ≃ −1 at present in the derived model which is supported by recent observations. It is 

observed that the bulk viscous coefficient decreases with cosmic time for the chosen three values of parameters 𝛾1 (figure 4). 

Also, it is interesting to mention that as bulk viscous coefficient converges to zero, viscous dark energy reduced to dark 

energy density. We observe that in the absence of bulk viscosity (𝜁0 = 0), DE EoS parameter does not cross the phantom divide 

line and it varies in the quintessence region. However, when viscous dark energy is considered, its effective EoS parameter could 

lay in the phantom region which is shown in figure 5 for parameters 𝛾1 = 0.5,1,1.5, 𝜁0 = 0, 0.5, 𝑏1 = 0.5, 𝑝2 = 0.5 and 𝑘1 =
0.5. As it is shown from the figure 5, for 𝛾1 ≥ 1 it ultimately tends to the cosmological constant (𝜔eff = −1) for late times. This 

special behavior of the effective EoS parameter is because of our choice of bulk viscosity which is a decreasing function of 

cosmic time in an expanding universe. Moreover from figure 6, the overall density parameter shows that it is constant and Ω ≊ 1 

which can show satisfactory behavior of flat universe, which is in agreement with the observational data. 

It is observed that the effective energy density parameter of dark energy dominates the energy density parameter of dark 

matter at late times. By illustrating the evolutionary trajectories in 𝑟 − 𝑠 plane, the model corresponds to ΛCDM limit (figure 7) in 

late time. The above discussions show that the bulk viscosity of dark energy plays very important role in the expansion history of 

the universe and it gives a good agreement with the recent scenario of modern cosmology. 
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